

Zinco (conc. > 0.2 mg/l)

Funzione: Differential Pulse Voltammetry (DPV/a)

Potenziale di Partenza(mV)	-800
Potenziale di Arrivo(mV)	-1200
Scala di Corrente(nA/µA/mA)	±102.4 μA
Velocità di Scansione(mV/s)	20.0
Numero di Cicli	2
Tempo di Attesa Iniziale(s)	10
Tempo di Gorgogliam. a Agit(s)	10
Velocità di Agitazione(r.p.m.)	500
Grandezza della Goccia(a.u.)	60

Soluzione standard concentrata di Zn (1 g/l)

Sciogliere 1 g di Zn puro in un volume minimo di HCl (1+1). Portare a volume in matraccio tarato da 1 litro con acqua distillata.

Elettrolita di supporto

Soluzione di CH₃COONa 0.1 M a pH 4.5. Sciogliere 8.2 g di CH₃COONa anidro (oppure 13.6 g di CH₃COONa · 3H₂O). in 80 ml di acqua distillata. Aggiungere 5.75 ml di CH₃COOH glaciale. Portare a volume in matraccio tarato da 1 l con acqua distillata.

Procedimento

Aggiungere 1 - 10 ml di campione a 10 ml di elettrolita di supporto.

In alternativa, aggiungere NH₃ conc. al campione direttamente fino a raggiungere un pH da 3 a 7

Analizzare le acque marine (o i campioni con contenuto elevato di sali), senza aggiungere l'elettrolita di supporto.

I campioni con pH >7 vanno neutralizzati prima di effettuare l'aggiunta dell'elettrolita di supporto.

Soluzione standard di lavoro (100 mg/l)

Preparare, al momento dell'uso, una soluzione standard diluendo 10 ml di soluzione concentrata di Zn in 100 ml di acqua distillata, in matraccio tarato.

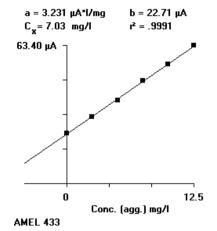
Osservazioni

La determinazione va effettuata ad un pH compreso tra 3 e 7. Se il campione possiede gia' questa caratteristica e' meglio evitare l'aggiunta di elettrolita di supporto, a meno che il suo contenuto salino non sia decisamente scarso.

Elettroliti di supporto alternativi

KCl o NaCl in soluzioni da 0.1 a 1 M Tampone citrato a pH 3

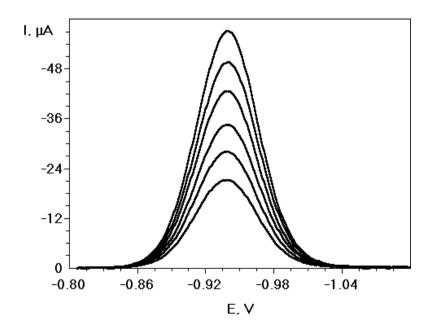
Report analitico


Analisi: Acqua rubinetto n. 2

Concentrazione Campione = 7.03 mg/l

Metodo: 5 aggiunte

Tabella Volumi


Volume Solvente 0 (ml)
Sol. Supporto 1 (ml)
Volume Campione 10 (ml)
Conc. Standard 1000 (mg/l)

#	Pot. Picco	Altezze
0	-938.6	21.07 μΑ
1	-938.6	27.89 μΑ
2	-939.5	34.45 μΑ
3	-938.6	42.54 μΑ
4	-939.5	49.49 μΑ
5	-940.1	56.99 μΑ

Dati Regressione

	Dati Regressione		
#	Conc.Agg.	Altezza x diluizione	
0	0 mg/l	23.18 μΑ	y = ax + b
1	2.50 "	30.75 μΑ	$a = 3.231 \mu A*l/mg$
2	5.00 "	38.07 μΑ	$b = 22.71 \mu A$
3	7.50 "	47.11 μΑ	$r^2 = .9991$
4	10.0 "	54.94 μΑ	
5	12.5 "	63.40 uA	

