

Tin

Method: Tropolone in 0.1 M H₂C₂O₄ and 0.2 M HCl Function: Differential Pulse Voltammetry (DPV/a)

Start Potential	(mV)	-300
End Potential	(mV)	-600
Current range		20,48
Scan Speed	(mV/s)	20
Number of cycles		3
Delay before swee	ep (s)	5
Purge and stir tim	ie (s)	300
Stirring speed	(rpm)	300
Drop Size	(a.u.)	60

Tin concentrated standard solution (1 g/l)

Dissolve 1.5974 g of anhidrous and pure $SnCl_2$ in 1 l of 6 M HCl, in a volumetric flask. (MM $SnCl_2 = 189.6$; MMSn = 118.69)

Supporting Electrolyte

- A- 1 M H₂C₂O₄ and 2 M HCl solution.
- **B-** Dissolve 90 g of H₂C₂O₄ (or 126 g of H₂C₂O₄·H₂O) and 167 ml of 37% HCl in 1 l of distilled water. Store in a polythene bottle.

B - 0.1 % (p/v) tropolone (2 idrossi – 2,4,6ciclo epta trien – 1 – one; cat. Fluka 9355) solution.

Dissolve 10 mg of tropolone in 10 ml of distilled water. Prepare the solution at the moment of the analysis. Store tropolone at 4°C.

Procedure

Pour 10 ml of sample in the cell. Add 1 ml of 1 M H₂C₂O₄ and 2 M HCl and 1 ml of tropolone solution.

Working standard solution (10 mg/l)

Dilute 1+99 the concentrated standard solution with 6 M HCl. Prepare the solution at the moment of the analysis

Interference

This method is very sensitive. Lead in high concentration of gives a peak far from the tropolone-Sn one.

Warnings

- The sample solution has to contain only Sn²⁺. Treat the sample in order to obtain total Sn in this
- If lead is completely and surely absent, tin can be analysed by using the same method used for lead. The Sn peak shows the same potential.

Analysis of tin in the preserver liquid of the peas in tinplate can

Procedure

Pour 10 ml of liquid in a crucible.

Dry in a oven, at 110°C.

Ash in a muffle furnace, at 600°C. Cool.

If the ashes are grey, add few drops of 1% HNO₃, dry and repeat the treatment in muffle furnace. Add 20 ml of 0.1 M H₂C₂O₄ and 0.2 M HCl and analyse.

Analytical report

Analysis: preserver liquid of the peas in a can

Sample Concentration = $77.0 \mu g/l$

Method: 3 additions

Volumes Table

Solvent Volume 0 (ml)Supporting Sol. 0 (ml)Sample Volume 10 (ml) Standard Conc. $10000 (\mu g/l)$

Height Table

#	Peak Pot.	Height
0	-463.5	812.4 nA
1	-462.6	1.324 μΑ
2	-463.5	1.865 μΑ
3	-462	2.350 μΑ

Regression Data

#	Add.Conc.	Height x dilution	
0	$0 \mu g/l$	812.4 nA	y = ax + b
1	50.0 "	1.331 μΑ	a = 10.55 nA*l/µg
2	100 "	1.884 μΑ	b = 812.4 nA
3	150 "	2.386 μΑ	$r^2 = .9996$

