

Sulphur in gasoline and distilled oil

Function: Differential Pulse Voltammetry (DPV/a)

Start Potential	(mV)	-250
End Potential	(mV)	100
Current range		10,24
Scan Speed (r	nV/s)	20
Number of cycles		3
Delay before sweep	(s)	5
Purge and stir time	(s)	300
Stirring speed	(rpm)	300
Drop Size	(a.u.)	60

Sulphur concentrated standard solution (1 g/l)

Dissolve 0.1 g of pure Sulphur in 100 ml of toluene, in a volumetric flask. Store the solution in a glass bottle.

Inner solution for reference electrode

5% LiCl solution in absolute ethanol. Store the solution in a glass bottle.

Supporting Electrolyte

0.04 M H₂SO₄ in absolute ethanol

Dilute 2.2 ml of 96% H₂SO₄ in 100 ml of absolute ethanol, in a volumetric flask. Store the solution in a glass bottle.

Procedure

Add 1 - 2 ml of sample to 10 ml of supporting electrolyte.

Working standard solution (40 mg/l)

Dilute the concentrated standard solution 4+96 in absolute ethanol, at the moment of the analysis.

Warnings

- Store samples and solutions in glass bottles. Hermetically closed. Do not use plastic ware.
- Reference electrode has to be voided, rinsed with water and ethanol and filled with the LiCl inner solution.
- Make the nitrogen bubbling in ethanol before send itself into the cell. In this way loss of solvent can be avoided during deaeration

Analytical Report

Analysis: green gasoline

Sample Concentration = 2.27 mg/l

Method: 3 additions

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 8 (ml)
Sample Volume 2 (ml)
Standard Conc. 10 (mg/l)

Height Table

#	Peak Pot.	Height
0	-69.3	4.098 μΑ
1	-73.8	6.872 μA
2	-77.5	9.047 μΑ
3	-81.9	11.42 μA

$a = 9.189 \ \mu A^*I/mg$ $b = 20.85 \ \mu A$ $C_{\chi} = 2.27 \ mg/I$ $r^2 = .9990$

AMEL 433

Regression Data

#	Add.Conc.	Height x dilution	
0	0 mg/l	20.49 μΑ	y = ax + b
1	1.50 "	35.39 µA	$a = 9.189 \mu A*l/mg$
2	3.00 "	47.95 µA	$b = 20.85 \mu A$
3	4 50 "	62 25 µA	$r^2 = 9990$

