

# **Platinum**

Function: Differential Pulse Voltammetry (DPV/a)

| Start Potential (mV)    | 0     |
|-------------------------|-------|
| End Potential (mV)      | -1000 |
| Current range           | 10.24 |
| Scan Speed (mV/s)       | 50    |
| Number of cycles        | 1     |
| Delay before sweep (s)  | 5     |
| Purge and stir time (s) | 300   |
| Stirring speed (rpm)    | 300   |
| Drop Size (a.u.)        | 60    |

## Platinum concentrated standard Solution (1 g/l)

Dissolve 0.1 g of pure Pt in 5 ml of aqua regia (37% HCl + 65% HNO<sub>3</sub>, 3+1, v/v). Dry and add 5 ml of 37% HCl and 0.1 g of NaCl. Dry again. Add 20 ml of 6 M HCl 1+1 to the residue and bring to volume in a 100 ml volumetric flask with distilled water.

### Reagents

- 1- 96% H<sub>2</sub>SO<sub>4</sub>
- 2- **66 mM Formaldehyde solution**. Dilute 0.5 ml of 36.5% formaldehyde in 100 ml of distilled water.
- 3- **120 mM Hydrazine sulphate solution**. Dissolve 1.56 g of hydrazine sulphate in 100 ml of distilled water.

#### **Procedure**

Add to 10 ml of sample, 0.32 ml of 96%  $H_2SO_4$ , deaerate for 5 minutes. Add 100  $\mu$ l of 66 mM Formaldehyde solution and 100  $\mu$ l of 120 mM Hydrazine sulphate solution.

### Diluted standard solution (1 mg/l)

Dilute 1 + 999 the concentrated standard solution of Pt in distilled water. Prepare the solution at the moment of the analysis

### Working standard solution (10 µg/l)

In a 50 ml volumetric flask, add 0.5 ml of diluted standard solution. Bring to volume with distilled water. Prepare the solution at the moment of the analysis



### Platinum in airborne

### **Procedure**

Sample the powder in the air using a cellulose filter, as described in the specific procedure for the determination of powder in air. Fold the filter and place it into the polarographic cell.

Add 2 ml of 65% HNO<sub>3</sub> and 2 ml of 40% H<sub>2</sub>O<sub>2</sub>. Let stand overnight.

Bring to dryness on a sand bath.


Add 1 ml of 65% HNO<sub>3</sub> and 2 ml of 40% H<sub>2</sub>O<sub>2</sub> and bring to dryness again.

Repeat the treatment until residue is white (not black, nor brown, nor yellow!)

Add 10 ml of distilled water to residue, 0.32 ml of 96%  $H_2SO_4$ , deaerate for 5 minutes. Add 100  $\mu$ l of 66 mM Formaldehyde solution and 100  $\mu$ l of 120 mM Hydrazine sulphate solution Alternatively, use a microwave disgestor, but bring to dryness the residue.

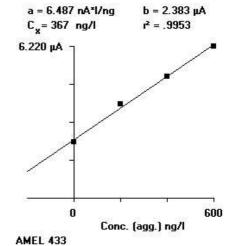
### Warning

Avoid using PTFE filters because the solution, after the boiling with concentrated HCl, cannot easily be digested.



## **Analytical Report**

Analysis: Filter n. 1

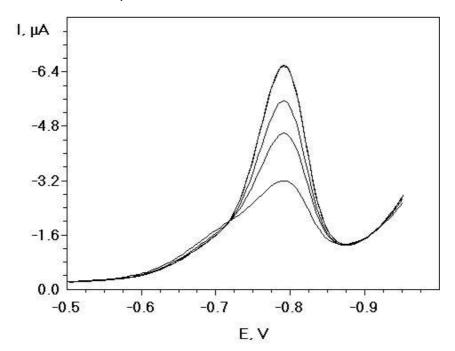

Sample Concentration = 367 ng/l in the solution

 $= 12.7 \text{ ng/m}^3$ 

Method: 3 addition

## Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 0.52 (ml)
Sample Volume 10 (ml)
Standard Conc. 10000 (ng/l)




## Height Table

| # | Peak Pot. | Height   |
|---|-----------|----------|
| 0 | -788.2    | 2.163 μΑ |
| 1 | -792.1    | 3.581 µA |
| 2 | -788.2    | 4.560 μΑ |
| 3 | -792.1    | 5.593 μA |

## Regression Data

| # | Add.Conc. | Height x dilution |                    |
|---|-----------|-------------------|--------------------|
| 0 | 0 ng/l    | 2.276 μΑ          | y = ax + b         |
| 1 | 200 "     | 3.839 µA          | a = 6.487  nA*l/ng |
| 2 | 400 "     | 4.980 µA          | $b = 2.383 \mu A$  |
| 3 | 600 "     | 6.220 µA          | $r^2 = .9953$      |

