

Mercury

Function: Square Wave Stripping Voltammetry (SQS) Electrode: Rotating gold electrode (2 mm diameter)

Start Potential	(mV)	-200
End Potential	(mV)	800
Current range		409.6 μ Α
Scan Speed	(mV/s)	50
Wave period	(mV)	6
Wave increment	(mV)	10
Sampling time	(s)	1
Deposition time	(s)	120
Deposition Pot.	(mV)	-200
Number of cycles		1
Delay before sweep	(s)	5
Purge and stir time	(s)	20
Stirring speed	(rpm)	500
Drop Size	(a.u.)	0
Electrode type		External
Electrode speed rotation (rpm)		3000

Mercury concentrated standard solution (1 g/l)

Dissolve 1.0789 g of pure HgO in 1 ml of 65% HNO_3 . Bring to volume in a 1 l volumetric flask with distilled water. (MM_{HgO} = 216.59; MM_{Hg}= 200.59).

Supporting Electrolyte

Dissolve 0.35 g of NaCl and 0.37 g of EDTA, di-sodium salt, in 70 ml of distilled water. Add 20 ml of 65% HClO₄. Bring to volume with distilled water, in a 100 ml volumetric flask

Procedure

Add 2 ml of supporting electrolyte to 20 ml of neutralised sample solution.

Working standard solution (1 mg/l)

Dilute 1+999 the concentrated standard solution with distilled water. Prepare the solution at the moment of the analysis.

Electrode cleaning

Before starting a new working session: 1900 mV for 60 s, then 0 mV for 30 s, and finally 1500 mV for 20 s
Before each scanning: 1500 mV for 20 s

Warnings

Sample solutions containing organic substances have to be digested in closed system in order to avoid loss of mercury vapours.

Use a 300 s deposition time if the sample contains less than $2 \mu g/l$ of Hg.

Analytical Report

Analysis: Waste water Sample Concentration = $2 \mu g/l$ Method: 4 additions

Volumes T	able
Solvent Volume	0 (ml)
Supporting Sol.	3 (ml)
Sample Volume	30 (ml)
Standard Conc.	1000 (µg/l)

	Height Table	
#	Peak Pot.	Height
0	410	36.78 µA
1	480	76.63 µA
2	480	106.8 µA
3	480	153.4 μA
4	490	195.5 µA

Regression Data

#	Add.Conc.	Height x dilution
0	0 μg/l	40.46 µA
1	2.67 "	84.50 μΑ
2	5.33 "	118.1 µA
3	8.00 "	170.0 μA
4	10.7 "	217.2 μΑ

y = ax + b
$a = 16.46 \ \mu A^{*l}/\mu g$
b = 38.25 μA
$r^2 = .9955$

