

Lead

Function: Differential Pulse Stripping Voltammetry (DPS/a)

Start Potential	(mV)	-800
End Potential	(mV)	-200
Current range		1,024 μΑ
Scan Speed	(mV/s)	30
Deposition time	(s)	120
Deposition Pot.	(mV)	-800
Number of cycles		3
Delay before swee	p (s)	5
Purge and stir time	e (s)	20
Stirring speed	(rpm)	300
Drop Size	(a.u.)	60

Lead concentrated standard solution (1 g/l)

Dissolve1.5986 g of Pb(NO₃)₂ (pure and dried), in 1 l of 1 % HCl, in a volumetric flask. $(MM_{Pb(NO_3)_2} = 331.21; MM_{Pb} = 207.2)$.

Supporting Electrolyte

A- 37% HCl

B- 1 M H₂C₂O₄ and 2 M HCl solution

Dissolve 90 g of H₂C₂O₄ (or 126 g of H₂C₂O₄ · H₂O) and 167 ml of 37% HCl in 1 l of distilled water. Store in a polythene bottle.

Procedure

Add 20 µl of 37 % HCl to 10 ml of neutralised sample.

Alternatively: add 1 ml of B solution (especially if copper has to be analysed in the same solution).

Analyse sea water, high salt content sample and acidic solution (at pH between 1 and 3) avoiding the addition of the supporting electrolyte.

Samples at pH above 7 are to be neutralised before the addition of the supporting electrolyte.

Working standard solution (1 mg/l)

Dilute 100 μ l of 1 g/l Pb standard solution in 100 ml of distilled water, in a volumetric flask. Add also 20 μ l of Cd concentrated standard solution if cadmium has to be analysed in the same scanning.

Alternative supporting electrolytes

HCl or KCl or NaCl solution from 0.1 up to 1 M

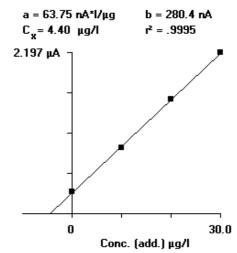
- 0.1 M Acetate buffer pH 4.5 or 0.1 M citrate buffer a pH 3
- 0.1 M Tartrate buffer H 9 (when zinc has to be analysed in the same solution)

Avoid any addition of HNO₃ to the sample, because this acid could raise up the analytical peak. Use HCl instead of HNO₃. If HNO₃ has to be used, dry the sample solution first and after add the supporting electrolyte.

Analytical report

Analysis: tap water

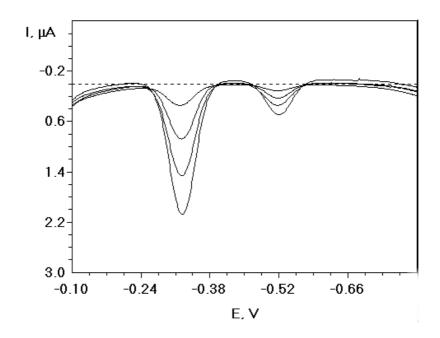
Sample Concentration = $4.40 \mu g/l$


Method: 3 additions

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 0.01 (ml)
Sample Volume 10 (ml)
Standard Conc. 1000 (µg/l)

Height Table


	11018111111111	
#	Peak Pot.	Height
0	-318.4	295.0 nA
1	-322.8	882.4 nA
2	-322.9	1.529 μΑ
3	-323.8	2.130 uA

AMEL 433

Regression Data

#	Add.Conc.	Height x dilution	
0	$0 \mu g/l$	295.3 nA	y = ax + b
1	10.0 "	892.1 nA	$a = 63.75 \text{ nA*l/\mug}$
2	20.0 "	1.562 μΑ	b = 280.4 nA
3	30.0 "	2.197 μA	$r^2 = .9995$

