

Cyanide

Function: Differential Pulse Voltammetry (DPV/a)

Start Potential	(mV)	0
End Potential	(mV)	-600
Current range		1,024 μ A
Scan Speed	(mV/s)	20
Number of cycles		3
Delay before swee	ep (s)	5
Purge and stir tim	ne (s)	300
Stirring speed	(rpm)	300
Drop Size	(a.u.)	60

Cyanide concentrated standard solution (1 g/l)

Dissolve 3 g of KOH in a minimum volume of distilled water, add 0.2503 g of KCN and bring to volume in a 100 ml volumetric flask with distilled water. ($MM_{KCN} = 65.12 MM_{CN} = 26.02$)

Supporting electrolyte

0.1 M borate buffer pH 9.75

Dissolve 5.1 g of H₃BO₃ in 800 ml of distilled water, add 2 g of NaOH, check if pH is 9.75 and bring to volume in 1 l volumetric flask with distilled water.

Procedure

High cyanide content sample (plating bath)

Add to 10 ml of supporting electrolyte a sample volume in way to obtain a solution containing 0.1-0.5~mg/l of CN⁻.

Low cyanide content sample

Add to 10 ml of sample 60 mg of H₃BO₃, add 10 % NaOH or 10% CH₃COOH al 10% until pH 9.75.

Working standard solution (100 mg/l)

Dilute 1+9 the concentrated standard solution in distilled water, at the moment of the analysis.

Working standard solution (1 mg/l)

Dilute 1+999 the concentrated standard solution in distilled water, at the moment of the analysis.

Warnings

Remember that the pH in the solutions containing cyanide must be always above 7! Anyway operate under a hood.

Destroy solutions containing cyanide after the analysis by adding persulphate at pH 8 and let standing them for 15 days.

Analytical Report

Analysis: waste water

Sample Concentration = $13.0 \mu g/l$

Method: 5 additions

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 0.1 (ml)
Sample Volume 10 (ml)
Standard Conc. 10000 (µg/l)

Height Table

#	Peak Pot.	Height
0	-152.6	71.24 nA
1	-160.1	181.0 nA
2	-164.6	280.1 nA
3	-170.6	387.4 nA
4	-173.6	501.4 nA
5	-173.6	604.3 nA

AMEL 433

Regression Data

#	Add.Conc.	Height x dilution	
0	$0 \mu g/l$	71.96 nA	y = ax + b
1	20.0 "	183.2 nA	$a = 5.448 \text{ nA*l/\mug}$
2	40.0 "	284.1 nA	b = 70.89 nA
3	60.0 "	393.7 nA	$r^2 = .9996$
4	80.0 "	510.5 nA	
5	100 "	616.4 nA	

Analytical Report

Analysis: gold bath

Sample Concentration = 165 mg/l

Conc. in the original sample: 16.5 g/l (d= 100)

Method: 5 additions

Volumes Table

Solvent Volume 0 (ml) Supporting Sol. 10.18 (ml) Sample (d=100) Vol. 0.025 (ml) Standard Conc. 100 (mg/l)

Height Table

	\mathcal{C}	
#	Peak Pot.	Height
0	-187.6	1.999 μΑ
1	-198.1	3.553 μΑ
2	-204.1	5.088 µA
3	-207.1	6.452 μΑ
4	-210.1	7.831 µA
5	-212.5	9.408 uA

Regression Data

#	Add.Conc.	Height x dilution	
0	0 mg/l	816.3 μΑ	y = ax + b
1	120 "	1.455 mA	$a = 5.074 \mu A*1/mg$
2	240 "	2.089 mA	$b = 836.1 \mu A$
3	360 "	2.657 mA	$r^2 = .9994$
4	480 "	3.235 mA	
5	600 "	3.897 mA	

