

Cadmium

Function: Differential Pulse Stripping Voltammetry (DPS/a)

Start Potential	(mV)	-800
End Potential	(mV)	-200
Current range		1,024 μ A
Scan Speed	(mV/s)	30
Deposition time	(s)	120
Deposition Pot.	(mV)	-800
Number of cycles		3
Delay before swee	p (s)	5
Purge and stir time	e (s)	20
Stirring speed	(rpm)	300
Drop Size	(a.u.)	60

Cadmium concentrated standard solution (1 g/l)

Dissolve 1 g of Cadmium in a minimum volume of 6 M HCl. Bring to volume in a 1 l volumetric flask with 1% HCl.

Supporting Electrolyte

A- 65% HNO₃

B- 1 M H₂C₂O₄ and 2 M HCl solution. Dissolve 90 g of H₂C₂O₄ (or 126 g of H₂C₂O₄·H₂O) and 167 ml of 37% HCl in 1 l of distilled water. Store in a polythene bottle.

Procedure

Add 10 µl of 65% HNO₃ to 10 ml of neutralised sample.

Alternatively: add 1 ml of B solution (especially if copper has to be analysed in the same solution).

Analyse sea water, high salt content sample and acidic solution (at pH between 1 and 3) avoiding the addition of the supporting electrolyte.

Samples at pH above 7 are to be neutralised before the addition of the supporting electrolyte.

Working standard solution (0.2 mg/l)

Dilute 20 μ l of Cd concentrated standard solution in 100 ml of distilled water, in a volumetric flask. Add also 100 μ l of 1 g/l Pb standard solution if lead has to be analysed in the same scanning.

Alternative supporting electrolytes

HCl or KCl or NaCl solution from 0.1 up to 1 M

- 0.1 M Acetate buffer pH 4.5 or 0.1 M citrate buffer a pH 3
- 0.1 M Tartrate buffer H 9 (when zinc has to be analysed in the same solution)

Analytical report

Analysis: tap water

Sample Concentration = $1.20 \mu g/l$

Method: 3 additions

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 0.01 (ml)
Sample Volume 10 (ml)
Standard Conc. 200 (µg/l)

Height Table

	$\boldsymbol{\omega}$	
#	Peak Pot.	Height
0	-517.9	94.32 nA
1	-517.3	248.2 nA
2	-519.4	406.2 nA
3	-520.3	548 5 nA

AMEL 433

Regression Data

TT	Add.Conc.	Height x dilution	
0	$0 \mu g/l$	94.42 nA	y = ax + b
1	2.00 "	251.0 nA	$a = 78.86 \text{ nA*l/\mug}$
2	4.00 "	414.8 nA	b = 94.86 nA
3	6.00 "	565.6 nA	$r^2 = .9997$

