

Arsenic - Total arsenic

Function: Differential Pulse Stripping Voltammetry (DPS/a)

Electrode: Gold film on glassy Carbon

Start Potential (mV)	-400
End Potential (mV)	300
Current range	102,4 μ A
Scan Speed (mV/s)	20
Deposition time (s)	180
Deposition Pot. (mV)	-600
Number of cycles	2
Delay before sweep (s)	10
Purge and stir time (s)	180
Stirring speed (rpm)	500
Drop Size (a.u.)	0
Electrode	External

Arsenic concentrated standard solution (1 g/l)

Dissolve 1.32 g of As_2O_3 in a minimum amount of 20% (p/v) KOH. Acidify to pH 3 with 20 % HNO₃. Bring to 1 l with distilled water in a volumetric flask. (MM_{As2O3} = 197.8; MM_{As} = 74.922)

Supporting electrolyte

1- 37% HCl

2- 1 g/l Au solution.

Dissolve 0.1 g of Au in a minimum volume of acqua regia (37% HCl + 65% HNO₃ 3+1, v/v). Moderately dry on bunsen funnel. Add 5 ml of 37% HCl to the residue. Cool and bring to volume with distilled water, in a 100 ml volumetric flask. Store in a dark bottle.

Procedure

Pour 20 ml of sample in the cell. Add 0.5 ml of 37% HCl and 0.5 ml of gold solution.

Working standard solution (10 mg/l)

Dilute 1+99 the concentrated standard solution with distilled water. Prepare the solution at the moment of the analysis

Warnings

- Use this method to analyse total arsenic (As(III) + As(V)). Use indifferently As (III) or As (V) standard solution.
- At the end of each scanning eliminate the bubbles of gas (H₂) from the surface of the electrode by a simply scrolling.
- The electrochemical cleaning of the film electrode at the end of each scanning is not necessary.
- Increase the sensitivity by increasing the deposition time. If the deposition potential is lowered above -600, a great quantity of hydrogen can grow on the surface of the electrode increasing in this way the noise of the signal and damaging the film.
- The magnetic rod has to be set very near to the electrode (about 5 mm) ensuring an efficient removal of the hydrogen.

Analytical report

Analysis: Total arsenic in deep water Sample Concentration = $7.80 \mu g/l$

Method: 5 additions

Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 1.04 (ml)
Sample Volume 20 (ml)
Standard Conc. 10000 (µg/l)

Height Table

#	Peak Pot.	Height
0	28.9	6.239 μA
1	35	32.97 μΑ
2	35	48.78 μA
3	35.6	76.36 μΑ
4	36.4	102.2 μΑ
5	38.6	133.0 μΑ

AMEL 433

Regression Data

	110810001011 2 0000		
#	Add. Conc.	Height x dilution	
0	$0 \mu g/l$	6.564 μΑ	y = ax + b
1	40.0 "	34.82 μΑ	$a = 750.6 \text{ nA*l/\mug}$
2	60.0 "	51.61 μΑ	$b = 5.857 \mu A$
3	100 "	81.10 μΑ	$r^2 = .9993$
4	140 "	109.0 μΑ	
5	180 "	142.4 µA	

