

Antimonio

Tecnica: Differential Pulse Stripping Voltammetry (DPS/a)

Potenziale di Partenza(mV)	-500
Potenziale di Arrivo(mV)	-50
Scala di Corrente(nA/µA/mA)	±2.048 μA
Velocità di Scansione(mV/s)	30.0
Tempo di Deposizione(s)	60
Potenziale di Deposizione(mV)	-500
Numero di Cicli	3
Tempo di Attesa Iniziale(s)	5
Tempo di Gorgogliam. a Agit(s)	20
Velocità di Agitazione(r.p.m.)	300
Grandezza della Goccia(a.u.)	30

Soluzione standard concentrata di Sb (1 g/l)

Sciogliere 2.743 g di potassio antimonil tartrato semiidrato, $K(SbO)C_4H_4O_6\cdot 1/2H_2O$ in 1 litro di acqua distillata, in matraccio tarato. ($MM_{K(SbO)C_4H_4O_6\cdot 1/2H_2O} = 333.93$; $MM_{Sb} = 121.8$).

Elettrolita di supporto

HCl all 1.5% per campioni che non contengono rame.

HCl al 12% per campioni che contengono rame.

Procedimento per campioni che non contengono rame

Aggiungere a 10 ml di campione neutro 0.4 ml di HCl al 37%.

Procedimento per campioni che contengono rame

Aggiungere a 10 ml di campione neutro 5 ml di HCl al 37%.

Soluzione standard di lavoro (10 mg/l)

Preparare, al momento dell'uso, una soluzione standard diluendo 1 + 99 la soluzione standard concentrata di Sb.

a = 29.58 nA*1/µg

 $C_x = 12.7 \mu g/l$

5.789 µA

b = 374.7 nA

180

 $r^2 = .9974$

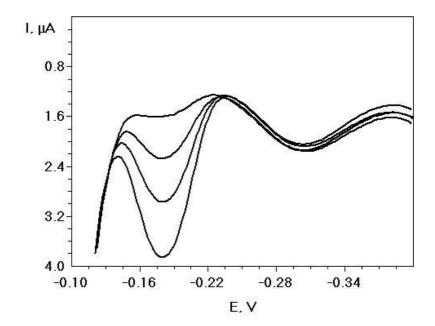
Report analitico

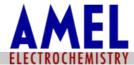
Analisi: Soluzione di terreno mineralizzato Concentrazione Campione = $12.7 \mu g/l \text{ (soluz.)}$ Concentrazione Campione = 1.27 mg/Kg (terr.)

Tabella Volumi

Volume Solvente 5 (ml) Sol. Supporto 5 (ml) Volume Campione 5 (ml)

Conc. Standard


Tabella Altezze


#	Pot. Picco	Altezze
0	-190.1	160.2 nA
1	-184.5	674.4 nA
2	-182.2	1.278 μΑ
3	-180.8	1.918 µA

Dati Regressione

#	Conc.Agg.	Altezza x diluizione	
0	$0 \mu g/l$	480.7 nA	y = ax + b
1	60.0 "	2.027 μΑ	$a = 29.58 \text{ nA*l/\mug}$
2	120 "	3.851 µA	b = 374.7 nA
3	180 "	5.789 μΑ	$r^2 = .9974$

Interferenze

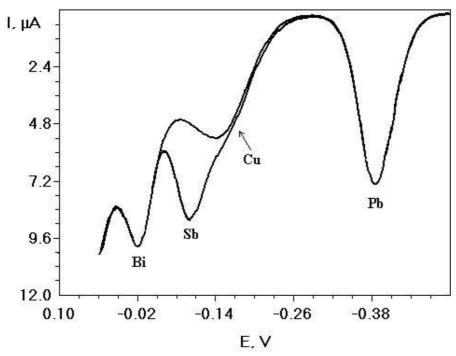


Fig. 1 - Pb, Cu, Sb e Bi in HCl 0.6 M Il picco dell'antimonio si sovrappone a quello del rame

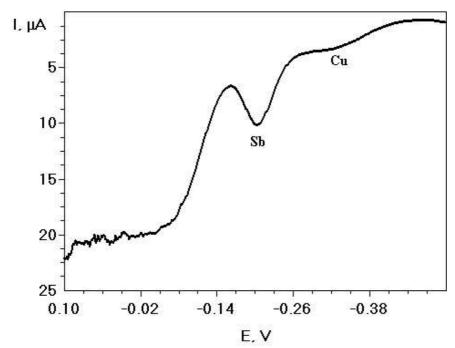


Fig. 2 - Pb, Cu, Sb e Bi in HCl 12 M

Il Piombo si scarica a potenziali più bassi e non compare nel tracciato; anche il rame si sposta a potenziali più bassi e non interferisce più con la scarica dell'antimonio. Il picco del bismuto, in queste condizioni, non può essere registrato a causa dell'alta concentrazione dell'acido.

Report analitico

Analisi: Sb in PET

Concentrazione nella soluzione campione = 5.21 mg/l

Concentrazione nel campione: 64.6 mg/Kg

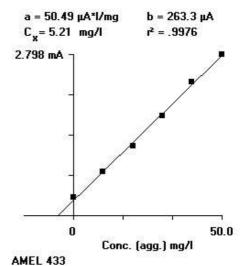
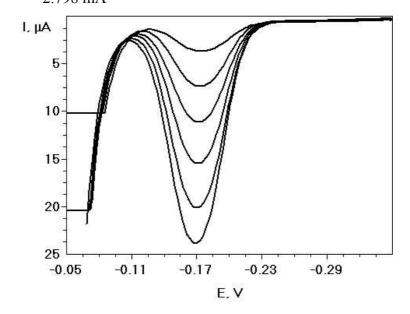

Metodo: 5 aggiunte

Tabella Volumi

Volume Solvente 0 (ml)
Sol. Supporto 12 (ml)
Volume Campione 0.1 (ml)
Conc. Standard 10 (mg/l)


Tab. Altezze

#	Pot. Picco	Altezze
0	-175.3	2.574 μΑ
1	-173	6.249 µA
2	-173	9.831 μA
3	-171.6	14.03 μΑ
4	-171.6	18.65 μA
5	-168.3	22.20 uA

Dati Regressione

#	Conc.Agg.	Altezza x diluizione	
0	0 mg/l	311.5 μΑ	y = ax + b
1	10.00	762.5 μΑ	$a = 50.49 \mu A*l/mg$
2	20.0 "	1.209 mA	$b = 263.3 \mu A$
3	30.0 "	1.740 mA	$r^2 = .9976$
4	40.0 "	2.331 mA	
5	50.0 "	2.798 mA	

