

Total aldehydes

Method: Hydrazine in 0.1 M citrate buffer, pH 6.5 Technique: Differential Pulse Voltammetry (DPV/a)

Start Potential	(mV)	-1000
End Potential	(mV)	-1350
Current range		2.048 μΑ
Scan Speed	(mV/s)	3
Number of cycles		5
Delay before sweep (s)		10
Purge and stir time (s)		300
Stirring speed	(rpm)	60
Drop Size	(a.u.)	60

Use this procedure for the analysis of formaldehydes and total aldehydes. The first shows a peak potential at about -970 mV, while the latter appear like a unique peak at about -1150 mV. Total aldehydes are analysed by using acetaldehyde as reference standard.

Total aldehyde concentrated standard solution (1 g/l)

Dissolve 1 g of pure acetaldehyde in 1 l of distilled water in a volumetric flask. Prepare fresh solution at the moment of analysis.

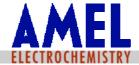
Supporting Electrolyte

- **1-1 M** ammonium citrate buffer at pH 6.5. Dissolve 21 g of mono hydrate citric acid in 80 of distilled water. Adjust pH to 6.5 by using conc. NH₃. Bring to the mark in a 100 ml volumetric flask with distilled water.
- **2-1% Hydrazine sulphate aqueous solution.** Prepare fresh solution at the moment of analysis

Procedure

Pour 10 ml of sample in the cell, add 1 ml of ammonium citrate buffer. Deaerate for 10 min. Add 1 ml of hydrazine solution.

Working standard solution (10 mg/l)


Dilute the concentrated standard solution 1+99 in, at the moment of the analysis.

Interference

High concentration of formaldehydes can mask the peak of the total aldehydes.

Alternative supporting electrolytes

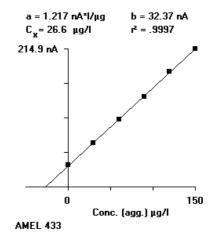
0.1 M ammonium phosphate buffer, pH 6.5

Analysis of total aldehydes in the air

Sample the air in a bubbler filled with in 25 ml of 0.1 M citrate buffer solution for 1-2 hour using a pump, with a flow of 1 ml/ min.

Pour the solution in a 25 ml volumetric flask and bring to volume with 0.1 M citrate buffer slution.

Use 10 ml of his solution for the voltammetric analysis.

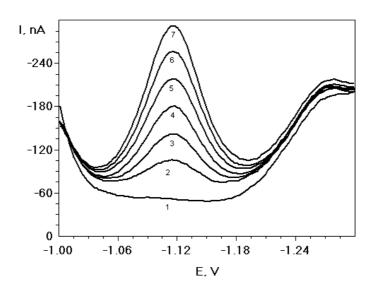

Analytical report

Analysis: Air of the lab

Sample (solution) Concentration = $27 \mu g/l$ Sample (air) Concentration = $8 \mu g/m^3$ Method: 5 addition and blank subtraction

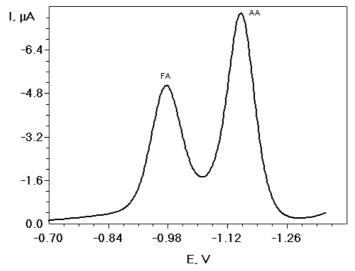
Volumes Table

Solvent Volume 0 (ml)
Supporting Sol. 1 (ml)
Sample Volume 10 (ml)
Standard Conc. 10000 (µg/l)



Height Table

#	Peak Pot.	Height
0	-1115.6	30.36 nA
1	-1113.3	61.55 nA
2	-1115.6	95.35 nA
3	-1116.5	126.7 nA
4	-1114.2	161.6 nA
5	-1115.6	192.7 nA


Regression Data

#	Add.Conc.	Height x dilution	
0	$0 \mu g/l$	33.40 nA	y = ax + b
1	30.0 "	67.90 nA	$a = 1.217 \text{ nA*l/\mu g}$
2	60.0 "	105.5 nA	b = 32.37 nA
3	90.0 "	140.5 nA	$r^2 = .9997$
4	120 "	179.7 nA	
5	150 "	214.9 nA	

1= Blank; 2= Sample; 3, 4, 5, 6, 7 = standard sol. additions

The procedure can be used also for the analysis of formaldehyde, even if the other total aldehydes have to be present at low concentration.

FA = formaldehyde; AA= Acetaldehyde (total aldehydes)